skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grubert, Lutz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efficient electrical doping of organic semiconductors relies on identifying appropriate molecular dopants that are capable of ionizing semiconductor molecules with a high yield, thereby creating mobile charges. We explore the suitability of two different material parameters to predict ion pair formation for different sets of semiconductor–dopant combinations: (i) redox-potentials measured by cyclic voltammetry in solution and (ii) ionization energy (IE)/electron affinity (EA) measured on thin films by ultraviolet/inverse photoelectron spectroscopy. Our study suggests, at least for molecular semiconductors and dopants, that redox-potentials are better suited to identify matching material pairs and their ion pair formation yield than IE/EA values. This is ascribed to the dependence of IE/EA values on molecular orientation and film structure on and above the meso-scale. In contrast, cyclic voltammetry measurements, although performed on solutions rather than on thin films, capture dopant–semiconductor energy levels on the molecular scale, which is more relevant for doping even in the case of solid thin films. 
    more » « less